4,210 research outputs found

    Video streaming

    Get PDF

    Photoresponsive Cellulose Nanocrystals Regular Paper

    Get PDF
    In this communication a method for the creation of fluorescent cellulose nanoparticles using click chemistry and subsequent photodimerization of the installed side-chains is demonstrated. In the first step, the primary hydroxyl groups on the surface of the CNCs were converted to carboxylic acids by using TEMPO-mediated hypohalite oxidation. The alkyne groups, essential for the click reaction, were introduced into the surface of TEMPO-oxidized CNCs via carbodiimide-mediated formation of an amide linkage between monomers carrying an amine functionality and carboxylic acid groups on the surface of the TEMPO-oxidized CNCs. Finally, the reaction of surface-modified TEMPO-oxidized cellulose nanocrystals and azido-bearing coumarin and anthracene monomers were carried out by means of a click chemistry, i.e., Copper(I))-catalyzed Azide-Alkyne Cycloaddition (CuAAC) to produce highly photo-responsive and fluorescent cellulose nanoparticles. Most significantly, the installed coumarin and/or anthracene side-chains were shown to undergo UV-induced [2+2] and [4+4] cycloaddition reactions, bringing and locking the cellulose nanocrystals together. This effort paves the way towards creating, cellulosic photo responsive nano-arrays with the potential of photo reversibility since these reactions are known to be reversible at varying wavelengths.Peer reviewe

    Detection of velocity in high temperature liquid metals

    Get PDF
    Various efforts have been made to measure velocity in liquid metals. All of these efforts, however, share the same inherent limitation, namely, not being operative at the high temperatures required by liquid metals and liquid slags in an industrial application. In this paper, the current methods used were reviewed, and a new technique was presented for the measurement of velocity in high temperature liquid metals. In using this technique there are two stages. Starting with the calibration stage and then moving to the actual measurement stage by making use of the data obtained from calibration stage. Calibration proceeds in the following manner. Metallic spheres moving with a specific velocity are immersed in liquid metal held under isothermal conditions and at specific temperature. Their melting times are determined very accurately with a novel technique. These measurements are repeated for different metal bath temperatures and for different velocities of metallic spheres. In this manner it is possible to calculate the correlation between velocity and melting times for each metal bath temperature. During the actual measurement stage, when the metal bath temperature is known and its velocity is unknown, the magnitude of the unknown liquid metal velocity can be derived as follows: metallic spheres are immersed into the moving liquid metal and their melting times are determined. Using the above mentioned correlations, it will be shown that the magnitude of the unknown velocity in liquid metal can be deduced. This new technique was applied to high temperature liquid aluminum and liquid steel and these results were presented. The potential applicability of this technique in other liquid metals and liquid slags will also be discussed

    Enhanced nonlinear optical effects in drift-biased nonreciprocal graphene plasmonics

    Full text link
    Nonlinear light-matter interactions are typically enhanced by increasing the local field and its interaction time with matter. Conventional methods to achieve these goals are based on resonances or slow-light effects. However, these methods suffer from various issues, including narrow operational bandwidths, large footprints, and material absorption. An interesting alternative approach to enhance the local field is offered by nonreciprocal systems: by blocking the path of a unidirectional wave in a terminated nonreciprocal waveguiding structure, broadband electromagnetic fields can be drastically enhanced and localized near the termination. This approach was previously studied only in three-dimensional gyrotropic material platforms where the need for external magnets and bulky materials make it less practical. Here, instead, we employ a magnet-free mechanism to break reciprocity in 2D plasmonic materials, e.g., graphene. Specifically, we employ high-speed drifting electrons on a voltage-biased graphene sheet to lift the forward/backward degeneracy of the surface plasmon-polariton dispersion, creating modes with different propagation properties parallel and antiparallel to the current. We show that controllable, asymmetric, and intense field hot-spots are generated at the edges of a suitably terminated graphene metasurface. We then theoretically demonstrate that such asymmetric field hot-spots offer an effective solution to enhance third-order nonlinear optical effects. As an example, we predict that, using realistic values of drift velocity, high third-harmonic conversion efficiencies of up to 0.3 percent are achievable around the plasmon resonance frequencies

    An efficient and stereoselective dearylation of asarinin and sesamin tetrahydrofurofuran lignans to acuminatolide by methyltrioxorhenium/H2O2 and UHP systems

    Get PDF
    The synthesis of stereoisomers of acuminatolide is rare and requires complex and time-consuming multistep procedures. Asarinin (1) and sesamin (2), two diasteromeric tetrahydrofurofuran lignans, are efficiently mono-dearylated by methyltrioxorhenium (MTO, I) and hydrogen peroxide (H2O2) or urea hydrogen peroxide adduct (UHP) as primary oxidant to give (-)-(7R,8'R,8R)-acuminatolide (3A) and (+)-(7S,8R,8'R)-acuminatolide (3B), respectively, in high yield and diastereoselectivity (de > 98%). The oxidation of 1 was also performed with novel heterogeneous catalysts based on the heterogenation of MTO on poly(4-vinylpyridine) and polystyrene resins. In these latter cases 3A was obtained with a different yield and selectivity depending on the physical-chemical properties of the support. Cytotoxic effects of 3A and 3B in mammalian cell lines in vitro are also reported

    Collider searches for dark matter through the higgs lens

    Get PDF
    Despite the fact that dark matter constitutes one of the cornerstones of the standard cosmological paradigm, its existence has so far only been inferred from astronomical observations and its microscopic nature remains elusive. Theoretical arguments suggest that dark matter might be connected to the symmetry-breaking mechanism of the electroweak interactions or of other symmetries extending the Standard Model of particle physics. The resulting Higgs bosons, including the 125 GeV125 \, {\rm GeV} spin-0 particle discovered recently at the Large Hadron Collider therefore represent a unique tool to search for dark matter candidates at collider experiments. This article reviews some of the relevant theoretical models as well as the results from the searches for dark matter in signatures that involve a Higgs-like particle at the Large Hadron Collider

    Hypertonicity: Pathophysiologic Concept and Experimental Studies

    Get PDF
    Disturbances in tonicity (effective osmolarity) are the major clinical disorders affecting cell volume. Cell shrinking secondary to hypertonicity causes severe clinical manifestations and even death. Quantitative management of hypertonic disorders is based on formulas computing the volume of hypotonic fluids required to correct a given level of hypertonicity. These formulas have limitations. The major limitation of the predictive formulas is that they represent closed system calculations and have been tested in anuric animals. Consequently, the formulas do not account for ongoing fluid losses during development or treatment of the hypertonic disorders. In addition, early comparisons of serum osmolality changes predicted by these formulas and observed in animals infused with hypertonic solutions clearly demonstrated that hypertonicity creates new intracellular solutes causing rises in serum osmolality higher than those predicted by the formulas. The mechanisms and types of intracellular solutes generated by hypertonicity and the effects of the solutes have been studied extensively in recent times. The solutes accumulated intracellularly in hypertonic states have potentially major adverse effects on the outcomes of treatment of these states. When hypertonicity was produced by the infusion of hypertonic sodium chloride solutions, the predicted and observed changes in serum sodium concentration were equal. This finding justifies the use of the predictive formulas in the management of hypernatremic states

    Electrochemical characterization of organic coatings for protection of historic steel artefacts

    Get PDF
    Figuras en el archivo zipElectrochemical techniques are mainly known in the field of cultural heritage conservation as a tool for the elimination of corrosion layers or the removal of chlorides. However, these techniques are also a valuable tool for assessing the anti-corrosive efficiency of protective coatings. The aim of this study was to evaluate the performance of different coatings for their use in metallic heritage conservation using polarization resistance (Rp) and electrochemical impedance spectroscopy (EIS). Carbon steel samples were prepared to simulate the surface composition and morphology of historic steel artefacts, and coated by a conservator-restorer following the common practices in conservation treatments. Three commercial organic coatings have been studied: a microcrystalline wax (RenaissanceTM) and a methyl acrylate/ethyl methacrylate copolymer resin (ParaloidTM B-72) dissolved in acetone –both them commonly used in conservation and restoration treatments– and a ethylene copolymer wax emulsion in water (PoligenTM ES- 91009), that has not been used so far for this purposes. Four commercial corrosion inhibitor additives were added to the ParaloidTM B-72 resin and PoligenTM ES-91009 wax. The additives were commercial preparations with the following known active components: a blend of triazoles (M435), an ammonium salt of tricarboxylic acid (M370), a calcium sulphonate (M109), and a bis-oxazoline (Alkaterge-TTM). Rp and EIS results showed that the best protection of the steel specimens was afforded by PoligenTM ES-91009 when applied in thick layers. None of the additives have shown a clear improvement of the protection properties of the coatings, and one of them impaired the barrier effect of the coating.Acknowledgements The authors express their gratitude to the Sixth Framework Programme of the European Commission for financial support of PROMET Project (Contract 509126). D.M. Bastidas expresses his gratitude to the CSIC of Spain for his contract under the I3P Programme, co-financed by the European Social Fund.Peer reviewe
    • …
    corecore